Finding k-best MAP Solutions Using LP Relaxations

Amir Globerson School of Computer Science and Engineering The Hebrew University

Joint Work with: Menachem Fromer (Hebrew Univ.)

Prediction Problems

- Consider the following problem:
 - ullet Observe variables: $oldsymbol{x}^v$
 - ullet Predict variables: $oldsymbol{x}^h$

Prediction Problems

- Consider the following problem:
 - ullet Observe variables: $oldsymbol{x}^v$
 - ullet Predict variables: $oldsymbol{x}^h$
- Countless applications:
 - Images:
 - Error correcting codes
 - Medical diagnostics
 - Text

Visible	Hidden
Noisy Image	Source Image
Received bits	Code word
Symptoms	Disease
Sentence	Derivation

One approach:

- One approach:
 - ullet Assume (or learn) a model for $p(oldsymbol{x}^h, oldsymbol{x}^v)$

- One approach:
 - ullet Assume (or learn) a model for $p(oldsymbol{x}^h, oldsymbol{x}^v)$
 - Predict the most likely hidden values

$$\operatorname{arg} \max_{\boldsymbol{x}^h} p(\boldsymbol{x}^h | \boldsymbol{x}^v)$$

- One approach:
 - ullet Assume (or learn) a model for $p(oldsymbol{x}^h, oldsymbol{x}^v)$
 - Predict the most likely hidden values

$$\operatorname{arg\,max}_{\boldsymbol{x}^h} p(\boldsymbol{x}^h | \boldsymbol{x}^v)$$

This conditional distribution often corresponds to a graphical model

- One approach:
 - ullet Assume (or learn) a model for $p(oldsymbol{x}^h, oldsymbol{x}^v)$
 - Predict the most likely hidden values

$$\operatorname{arg\,max}_{\boldsymbol{x}^h} p(\boldsymbol{x}^h | \boldsymbol{x}^v)$$

- This conditional distribution often corresponds to a graphical model
- Need to know how to find an assignment with maximum probability

The MAP Problem

• Given a graphical model over x_1, \ldots, x_n

$$p(\mathbf{x}) = \frac{1}{Z} e^{f(\mathbf{x})}$$
$$f(\mathbf{x}) = \sum_{i,j} \theta_{ij}(x_i, x_j)$$

- Find the most likely assignment: $\arg\max_{m{x}} f(m{x})$

x is discrete so generally NP hard

- x is discrete so generally NP hard
- Many approximation approaches:

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
 - Loopy belief propagation (e.g., max product)

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
 - Loopy belief propagation (e.g., max product)
 - Linear programming relaxations

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
 - ▲ Loopy belief propagation (e.g., max product)
 - Linear programming relaxations

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
- Loopy belief propagation (e.g., max product)
 - Linear programming relaxations
- LP approaches

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
- Loopy belief propagation (e.g., max product)
 - Linear programming relaxations
- LP approaches
 - Provide optimality certificates

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
- Loopy belief propagation (e.g., max product)
 - Linear programming relaxations
- LP approaches
 - Provide optimality certificates
 - Optimal in some cases (e.g., submodular functions)

- x is discrete so generally NP hard
- Many approximation approaches:
 - Greedy search
- Loopy belief propagation (e.g., max product)
 - Linear programming relaxations
- LP approaches
 - Provide optimality certificates
 - Optimal in some cases (e.g., submodular functions)
 - Can be solved via message passing

Find the k best assignments for f(x)

- Find the k best assignments for f(x)
- ullet Denote these by $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(k)}$

- Find the k best assignments for f(x)
- ullet Denote these by $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(k)}$
- Useful in:

- Find the k best assignments for f(x)
- ullet Denote these by $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(k)}$
- Useful in:
 - Finding multiple candidate solutions when the energy function is not accurate (e.g., protein design)

- Find the k best assignments for f(x)
- ullet Denote these by $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(k)}$
- Useful in:
 - Finding multiple candidate solutions when the energy function is not accurate (e.g., protein design)
 - As a first processing stage before applying more complex methods

- Find the k best assignments for f(x)
- ullet Denote these by $oldsymbol{x}^{(1)},\ldots,oldsymbol{x}^{(k)}$
- Useful in:
 - Finding multiple candidate solutions when the energy function is not accurate (e.g., protein design)
 - As a first processing stage before applying more complex methods
 - Supervised learning

From 2 to k best

- We can show that given a polynomial algorithm for k=2, the problem can be solved for any k in O(k)
- Focus on k=2
- Our key question: what is the LP formulation of the problem, and its relaxations?

Outline

- LP formulation of the MAP problem
- LP for 2nd best
 - General (intractable) exact formulation
 - Tractable formulation for tree graphs
 - Approximations for non-tree graphs
- Experiments

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP as LP:

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

• MAP as LP: $\max_{\mu \in \mathcal{S}} \mu \cdot \theta$

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

• MAP as LP: $\max_{\mu \in \mathcal{S}} \mu \cdot \theta$

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP as LP:

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP as LP:

ApproximateMAP via LP

MAP and LP

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP as LP:

Approximate MAP via LP

MAP and LP

MAP:

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP as LP:

ApproximateMAP via LP

Schlesinger, Deza & Laurent, Boros, Wainwright, Kolmogorov

$$\boldsymbol{x}^* = \arg\max_{\boldsymbol{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$\boldsymbol{x}^* = \arg\max_{\boldsymbol{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\boldsymbol{x})} \sum_{\boldsymbol{x}} q(\boldsymbol{x}) \sum_{ij} \theta_{ij}(x_i, x_j)$$

$$\boldsymbol{x}^* = \arg\max_{\boldsymbol{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\boldsymbol{x})} \sum_{\boldsymbol{x}} q(\boldsymbol{x}) \sum_{ij} \theta_{ij}(x_i, x_j)$$

$$\mathbf{x}^* = \arg \max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

$$x^* = \arg \max_{\boldsymbol{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\boldsymbol{x})} \sum_{\boldsymbol{x}} q(\boldsymbol{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\boldsymbol{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

Objective depends only on pairwise marginals

$$\mathbf{x}^* = \arg \max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- Objective depends only on pairwise marginals
- ullet But only those that correspond to some distribution q(x)

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- Objective depends only on pairwise marginals
- ullet But only those that correspond to some distribution q(x)
- This set is called the Marginal polytope (Wainwright & Jordan)

$$\mathbf{x}^* = \arg \max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- Objective depends only on pairwise marginals
- ullet But only those that correspond to some distribution q(x)
- This set is called the Marginal polytope (Wainwright & Jordan)

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- Objective depends only on pairwise marginals
- ullet But only those that correspond to some distribution q(x)
- This set is called the Marginal polytope (Wainwright & Jordan)

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \sum_{ij \in E} \theta_{ij}(x_i, x_j)$$

$$= \max_{q(\mathbf{x})} \sum_{\mathbf{x}} q(\mathbf{x}) \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{q(\mathbf{x})} \sum_{ij} \sum_{x_i, x_j} q_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- Objective depends only on pairwise marginals
- ullet But only those that correspond to some distribution q(x)
- This set is called the Marginal polytope (Wainwright & Jordan)

See: Cut polytope (Deza, Laurent), Quadric polytope (Boros)

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$

- There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$
- Difficult set to characterize. Easy to outer bound

- There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$
- Difficult set to characterize. Easy to outer bound
- The vertices have integral values and correspond to assignments on x

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) = \max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

Exact but Hard!

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

If optimum is an integral vertex, MAP is solved

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- If optimum is an integral vertex, MAP is solved
- Possible outer bound: Pairwise consistency

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- If optimum is an integral vertex, MAP is solved
- Possible outer bound: Pairwise consistency

$$\sum_{x_i} \mu_{ij}(x_i, x_j) = \sum_{x_k} \mu_{jk}(x_j, x_k)$$

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- If optimum is an integral vertex, MAP is solved
- Possible outer bound: Pairwise consistency

Exact for trees

$$\sum_{x_i} \mu_{ij}(x_i, x_j) = \sum_{x_k} \mu_{jk}(x_j, x_k)$$

$$\max_{\boldsymbol{x}} \sum_{ij} \theta_{ij}(x_i, x_j) \le \max_{\boldsymbol{\mu} \in \mathcal{S}} \sum_{ij \in E} \sum_{x_i, x_j} \mu_{ij}(x_i, x_j) \theta_{ij}(x_i, x_j)$$

- If optimum is an integral vertex, MAP is solved
- Possible outer bound: Pairwise consistency

Exact for trees

$$\sum_{x_i} \mu_{ij}(x_i, x_j) = \sum_{x_k} \mu_{jk}(x_j, x_k)$$

 Efficient message passing schemes for solving the resulting (dual) LP

Outline

- LP formulation of the MAP problem
- LP for 2nd best
 - General (intractable) exact formulation
 - Tractable formulation for tree graphs
 - Approximations for non-tree graphs
- Experiments

MAP

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{x}\neq\boldsymbol{x}^{(1)}}f(\boldsymbol{x})$$

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

$$\max_{oldsymbol{x}
eq oldsymbol{x}^{(1)}} f(oldsymbol{x})$$

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

$$\max_{m{x}
eq m{x}^{(1)}} f(m{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G, \boldsymbol{x}^{(1)})} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

2nd best

$$\max_{m{x}
eq m{x}^{(1)}} f(m{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G, \boldsymbol{x}^{(1)})} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

Approximations:

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

Approximations:

$$\max_{m{x}
eq m{x}^{(1)}} f(m{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G, \boldsymbol{x}^{(1)})} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

MAP

$$\max_{\boldsymbol{x}} f(\boldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G)} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

Approximations:

2nd best

$$\max_{oldsymbol{x}
eq oldsymbol{x}^{(1)}} f(oldsymbol{x})$$

$$\max_{\boldsymbol{\mu} \in \mathcal{M}(G, \boldsymbol{x}^{(1)})} \boldsymbol{\mu} \cdot \boldsymbol{\theta}$$

 $oldsymbol{x}^{(1)}$

A new marginal polytope

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$ and:

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$ and: p(z) = 0

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$

and:
$$p(z) = 0$$

• Given an assignment \mathbf{z} , define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, \mathbf{z})$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$ and: p(z) = 0

Given an assignment z, define the Assignment Excluding Marginal Polytope: $\mathcal{M}(G, z)$

• There exists a p(x) s.t. $p(x_i, x_j) = \mu_{ij}(x_i, x_j)$

and:
$$p(z) = 0$$

The 2nd best problem corresponds to the following LP:

$$\max_{\boldsymbol{x}\neq\boldsymbol{x}^{(1)}}f(\boldsymbol{x};\boldsymbol{\theta}) = \max_{\boldsymbol{\mu}\in\mathcal{M}(G,\boldsymbol{x}^{(1)})}\boldsymbol{\mu}\cdot\boldsymbol{\theta}$$

The 2nd best problem corresponds to the following LP:

$$\max_{\boldsymbol{x}\neq\boldsymbol{x}^{(1)}}f(\boldsymbol{x};\boldsymbol{\theta}) = \max_{\boldsymbol{\mu}\in\mathcal{M}(G,\boldsymbol{x}^{(1)})}\boldsymbol{\mu}\cdot\boldsymbol{\theta}$$

The 2nd best problem corresponds to the following LP:

$$\max_{\boldsymbol{x}\neq\boldsymbol{x}^{(1)}}f(\boldsymbol{x};\boldsymbol{\theta}) = \max_{\boldsymbol{\mu}\in\mathcal{M}(G,\boldsymbol{x}^{(1)})}\boldsymbol{\mu}\cdot\boldsymbol{\theta}$$

• Is it $\mathcal{M}(G)$ plus one inequality?

The 2nd best problem corresponds to the following LP:

$$\max_{\boldsymbol{x}\neq\boldsymbol{x}^{(1)}}f(\boldsymbol{x};\boldsymbol{\theta}) = \max_{\boldsymbol{\mu}\in\mathcal{M}(G,\boldsymbol{x}^{(1)})}\boldsymbol{\mu}\cdot\boldsymbol{\theta}$$

- Is there a simple characterization of $\mathcal{M}(G, \boldsymbol{x}^{(1)})$?
- Is it $\mathcal{M}(G)$ plus one inequality?
- If so, what inequality?

Outline

- LP formulation of the MAP problem
- LP for 2nd best
 - General (intractable) exact formulation
 - Tractable formulation for tree graphs
 - Approximations for non-tree graphs
- Experiments

Z

Any valid inequality must separate z
 from the other vertices

• How about: $\sum_i \mu_i(z_i) \leq n-1$ (Santos 91)

- ullet How about: $\sum \mu_i(z_i) \leq n-1$ (Santos 91)
- RHS is n for \mathbf{z}^{i} and n-1 or less for other vertices

- How about: $\sum \mu_i(z_i) \leq n-1$ (Santos 91)
- RHS is n for \mathbf{z}^{i} and n-1 or less for other vertices
- But: Results in fractional vertices, even for trees

- How about: $\sum \mu_i(z_i) \leq n-1$ (Santos 91)
- RHS is n for \mathbf{z}^{i} and n-1 or less for other vertices
- But: Results in fractional vertices, even for trees

- How about: $\sum \mu_i(z_i) \leq n-1$ (Santos 91)
- RHS is n for \mathbf{z}^{i} and n-1 or less for other vertices
- But: Results in fractional vertices, even for trees
- Only an outer bound on $\mathcal{M}(G, z)$

Focus on the case where G is a tree

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

- Focus on the case where G is a tree
- $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

Bethe:
$$H(\mu) = \sum_{i} (1 - d_i) H_i(X_i) + \sum_{ij \in G} H(X_i, X_j)$$

- Focus on the case where G is a tree
- $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\mu, z) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

$$I(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$$

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

 $I(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

 $I(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

$$\mathcal{M}(G, \boldsymbol{z})$$

- Focus on the case where G is a tree
- ullet $\mathcal{M}(G)$ is given by pairwise consistency

Define:

$$I(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_i) \mu_i(z_i) + \sum_{ij \in G} \mu_{ij}(z_i, z_j)$$

 $I(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

Theorem:

$$\mathcal{M}(G, \mathbf{z}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \mathbf{z}) \leq 0 \}$$

z

Proof...

$$\mathcal{M}(G, \boldsymbol{z})$$

• Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show: A(G, z) = M(G, z)

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

Can construct p(x)

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

$$F(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases}$$

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

$$F(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) = \mathbf{0} \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \quad \forall \boldsymbol{\mu} \in \mathcal{A}(G, \boldsymbol{z})$$

- Define: $A(G, z) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, z) \leq 0 \}$
- Want to show that if $\mu \in \mathcal{A}(G, z)$ there exists a $p(\mathbf{x})$ that has these marginals and $p(\mathbf{z})=0$.

$$F(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) = \mathbf{0} \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \quad \forall \boldsymbol{\mu} \in \mathcal{A}(G, \boldsymbol{z})$$

In fact we can show that for trees:

$$\mu \in \mathcal{M}(G)$$
 \longrightarrow $F(\mu) = \max\{0, I(\mu, z)\}$

$$F(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases}$$

$$F(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$F'(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$F'(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$F'(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\max \quad \lambda \cdot \mu$$
s.t.
$$\sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_i \lambda_i(x_i) \leq 0 \quad \forall x \neq z$$

$$\sum_{ij} \lambda_{ij}(z_i, z_j) + \sum_i \lambda_i(z_i) = 1$$

ullet We show that the value of the above is $I(oldsymbol{\mu},oldsymbol{z})$

$$F'(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

Dual:

$$\max \quad \lambda \cdot \mu$$
s.t.
$$\sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_i \lambda_i(x_i) \leq 0 \quad \forall x \neq z$$

$$\sum_{ij} \lambda_{ij}(z_i, z_j) + \sum_i \lambda_i(z_i) = 1$$

- ullet We show that the value of the above is $I(oldsymbol{\mu},oldsymbol{z})$
- From there it's easy to conclude that

$$F'(\boldsymbol{\mu}) = \begin{cases} \min & p(\boldsymbol{z}) \\ \text{s.t.} & p_{ij}(x_i, x_j) = \mu_{ij}(x_i, x_j) \\ & p_i(x_i) = \mu_i(x_i) \\ & p(\boldsymbol{x}) \ge 0 \end{cases} \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\max_{\mathbf{s}.t.} \quad \frac{\boldsymbol{\lambda} \cdot \boldsymbol{\mu}}{\sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_{i}(x_i) \leq 0} \quad \forall \boldsymbol{x} \neq \boldsymbol{z}$$
$$\sum_{ij} \lambda_{ij}(\boldsymbol{z}_i, \boldsymbol{z}_j) + \sum_{i} \lambda_{i}(\boldsymbol{z}_i) = 1$$

- ullet We show that the value of the above is $I(oldsymbol{\mu},oldsymbol{z})$
- From there it's easy to conclude that

$$F(\boldsymbol{\mu}) = \max\{0, I(\boldsymbol{\mu}, \boldsymbol{z})\}$$

$$\max_{\mathbf{s}.t.} \quad \boldsymbol{\lambda} \cdot \boldsymbol{\mu}$$

$$\mathrm{s}.t. \quad \lambda(\boldsymbol{x}) \leq 0 \quad \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\lambda(\boldsymbol{z}) = 1$$

$$\lambda(\boldsymbol{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\max_{\mathbf{s}.t.} \quad \boldsymbol{\lambda} \cdot \boldsymbol{\mu}$$

$$\mathrm{s}.t. \quad \lambda(\boldsymbol{x}) \leq 0 \quad \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\lambda(\boldsymbol{z}) = 1$$

$$\lambda(\boldsymbol{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\max_{\mathbf{s}.t.} \quad \boldsymbol{\lambda} \cdot \boldsymbol{\mu}$$

$$\mathrm{s}.t. \quad \lambda(\boldsymbol{x}) \leq 0 \quad \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\lambda(\boldsymbol{z}) = 1$$

$$\lambda(\boldsymbol{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\bar{\lambda}(x_i) = \max_{\hat{x}:\hat{x}_i = x_i} \lambda(x)$$
 $\bar{\lambda}(x_i.x_j) = \max_{\hat{x}:\hat{x}_i = x_i, \hat{x}_j = x_j} \lambda(x)$

$$\max_{\mathbf{s}.t.} \quad \boldsymbol{\lambda} \cdot \boldsymbol{\mu}$$

$$\mathbf{s}.t. \quad \lambda(\boldsymbol{x}) \leq 0 \quad \forall \boldsymbol{x} \neq \boldsymbol{z}$$

$$\lambda(\boldsymbol{z}) = 1$$

$$\lambda(\boldsymbol{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\bar{\lambda}(x_i) = \max_{\hat{x}:\hat{x}_i = x_i} \lambda(x)
\bar{\lambda}(x_i.x_j) = \max_{\hat{x}:\hat{x}_i = x_i, \hat{x}_j = x_j} \lambda(x)$$

$$\bar{\lambda}(x_i) = 1
\bar{\lambda}(x_i) \leq 0 \quad x_i \neq z_i$$

$$\max_{\mathbf{s}.t.} \quad \lambda \cdot \mu$$
s.t.
$$\lambda(\mathbf{x}) \leq 0 \quad \forall \mathbf{x} \neq \mathbf{z}$$

$$\lambda(\mathbf{z}) = 1$$

$$\lambda(\mathbf{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\bar{\lambda}(x_i) = \max_{\hat{x}:\hat{x}_i = x_i} \lambda(x) \qquad \qquad \bar{\lambda}(z_i) = 1
\bar{\lambda}(x_i.x_j) = \max_{\hat{x}:\hat{x}_i = x_i, \hat{x}_j = x_j} \lambda(x) \qquad \qquad \bar{\lambda}(x_i) \leq 0 \qquad x_i \neq z_i$$

• Rewrite:
$$\lambda(\boldsymbol{x}) = \sum_{i} (1 - d_i) \bar{\lambda}(x_i) + \sum_{ij \in T} \bar{\lambda}_{ij}(x_i, x_j)$$

$$\max_{\mathbf{s}.t.} \quad \lambda \cdot \mu$$
s.t.
$$\lambda(\mathbf{x}) \leq 0 \quad \forall \mathbf{x} \neq \mathbf{z}$$

$$\lambda(\mathbf{z}) = 1$$

$$\lambda(\mathbf{x}) = \sum_{ij} \lambda_{ij}(x_i, x_j) + \sum_{i} \lambda_i(x_i)$$

$$\bar{\lambda}(x_i) = \max_{\hat{x}:\hat{x}_i = x_i} \lambda(x)
\bar{\lambda}(x_i.x_j) = \max_{\hat{x}:\hat{x}_i = x_i, \hat{x}_j = x_j} \lambda(x)
\bar{\lambda}(x_i) = 1
\bar{\lambda}(x_i) \leq 0 \quad x_i \neq z_i$$

- Rewrite: $\lambda(\boldsymbol{x}) = \sum_i (1 d_i) \bar{\lambda}(x_i) + \sum_{ij \in T} \bar{\lambda}_{ij}(x_i, x_j)$
- Result follows after some algebra

$$\mathcal{M}(G, \mathbf{x}^{(1)}) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, \mathbf{x}^{(1)}) \le 0 \}$$

$$\mathcal{M}(G, \mathbf{x}^{(1)}) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, \mathbf{x}^{(1)}) \le 0 \}$$

 The LP for 2nd best differs from the marginal polytope by one linear inequality constraint

$$\mathcal{M}(G, \mathbf{x}^{(1)}) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, \mathbf{x}^{(1)}) \le 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The $2^{\rm nd}$ best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

$$\mathcal{M}(G, \mathbf{x}^{(1)}) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, \mathbf{x}^{(1)}) \le 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The 2nd best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

$$\mathcal{M}(G, \boldsymbol{x}^{(1)}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \boldsymbol{x}^{(1)}) \leq 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The 2^{nd} best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

$$\mathcal{M}(G, \boldsymbol{x}^{(1)}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \boldsymbol{x}^{(1)}) \leq 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The 2nd best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

$$\mathcal{M}(G, \mathbf{x}^{(1)}) = \{ \mu \mid \mu \in \mathcal{M}(G), I(\mu, \mathbf{x}^{(1)}) \le 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The 2nd best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

$$\mathcal{M}(G, \boldsymbol{x}^{(1)}) = \{ \boldsymbol{\mu} \mid \boldsymbol{\mu} \in \mathcal{M}(G), I(\boldsymbol{\mu}, \boldsymbol{x}^{(1)}) \leq 0 \}$$

- The LP for 2nd best differs from the marginal polytope by one linear inequality constraint
- The 2^{nd} best satisfies $I(\mu, x^{(1)}) = 0$ so it cannot be any assignment

Non tree graphs

- Any graph can be converted into a junction tree
- We can apply our tree result there
- For a junction tree with cliques C and separators S, the inequality is:

$$\sum_{S \in \mathcal{S}} (1 - d_S) \mu_S(z_S) + \sum_{C \in \mathcal{C}} \mu_C(z_C) \le 0$$

Specifying the marginal polytope requires a number of variables exponential in the tree width. Not practical.

Outline

- LP formulation of the MAP problem
- LP for 2nd best
 - General (intractable) exact formulation
 - Tractable formulation for tree graphs
 - Approximations for non-tree graphs
- Experiments

Outer bound on $\mathcal{M}(G)$

Outer bound on $\mathcal{M}(G)$

Outer bound on $\mathcal{M}(G)$

Outer bound on $\mathcal{M}(G)$

Spanning tree inequalities

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

• And the constraint: $I^T(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

Spanning tree inequalities

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

• And the constraint: $I^T(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

Spanning tree inequalities

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

• And the constraint: $I^T(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

• And the constraint: $I^T(\boldsymbol{\mu}, \boldsymbol{z}) \leq 0$

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

 Separates **z** from the other vertices but might result in fractional vertices

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

 Separates **z** from the other vertices but might result in fractional vertices

Give a spanning subtree T of G define

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{i} (1 - d_{i})\mu_{i}(z_{i}) + \sum_{ij \in T} \mu_{ij}(z_{i}, z_{j})$$

Separates **z** from the other vertices but might result in fractional vertices

Can we add all spanning tree inequalities efficiently?

- Can we add all spanning tree inequalities efficiently?
- Yes, via a cutting plane approach:

- Can we add all spanning tree inequalities efficiently?
- Yes, via a cutting plane approach:
 - Start with one inequality

- Can we add all spanning tree inequalities efficiently?
- Yes, via a cutting plane approach:
 - Start with one inequality
 - Solve LP

- Can we add all spanning tree inequalities efficiently?
- Yes, via a cutting plane approach:
 - Start with one inequality
 - Solve LP
 - If solution is fractional, find a violated tree inequality (if exists) and add it

- How do we find a violated tree inequality?
- Note: Even all spanning tree inequalities might not suffice

- ullet For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree

- ullet For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

- ullet For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{ij \in T} \left[\mu_{ij}(z_i, z_j) - \mu_i(z_i) - \mu_j(z_j) \right] + \sum_i \mu_i(z_i)$$

- For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{ij \in T} \left[\mu_{ij}(z_i, z_j) - \mu_i(z_i) - \mu_j(z_j) \right] + \sum_i \mu_i(z_i)$$

- ullet For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

$$I^{T}(\boldsymbol{\mu}, \boldsymbol{z}) = \sum_{ij \in T} \left[\mu_{ij}(z_i, z_j) - \mu_i(z_i) - \mu_j(z_j) \right] + \sum_i \mu_i(z_i)$$
 $\boldsymbol{w_{ij}}$

- For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

$$I^T(m{\mu}, m{z}) = \sum_{ij \in T} \left[\mu_{ij}(z_i, z_j) - \mu_i(z_i) - \mu_j(z_j)
ight] + \sum_i \mu_i(z_i)$$
 Fixed

- For a given $oldsymbol{\mu}$ find $\max_T I^T(oldsymbol{\mu}, oldsymbol{z})$
- If it's positive, add the maximizing tree
- How can we maximize over all trees? Note that:

$$I^T(m{\mu}, m{z}) = \sum_{ij \in T} \left[\mu_{ij}(z_i, z_j) - \mu_i(z_i) - \mu_j(z_j)
ight] + \sum_i \mu_i(z_i)$$
 Fixed

 Decomposes into edge scores. Maximizing tree can be found using a maximum-weight-spanning-tree algorithm (e.g., Wainwright 02)

Experiments

- Alternative algorithms for approximate 2nd best:
 - Using approximate marginals from max-product (BMMF; Yanover and Weiss 04)
 - ullet Lawler/Nillson (72,80) Partition assignments $oldsymbol{x}
 eq oldsymbol{x}^{(1)}$:

$$x_{1} \neq x_{1}^{(1)} \mid x_{2} = * \mid x_{3} = * \mid \dots \mid x_{n} = * \mid x_{1} = x_{1}^{(1)} \mid x_{2} \neq x_{2}^{(1)} \mid x_{3} = * \mid \dots \mid x_{n} = * \mid x_{n} = * \mid x_{1} = x_{1}^{(1)} \mid x_{2} = x_{2}^{(1)} \mid x_{3} = x_{1}^{(3)} \mid \dots \mid x_{n} \neq x_{1}^{(n)} \mid x_{n} \neq x_{1}^{(n)} = x_{1}^$$

- Maximize over each part approximately. Cost O(n)
- Our algorithm: STRIPES

Attractive Grids

- Ising models with ferromagnetic interaction
- The local-polytope guaranteed to yield exact first best (but not equal to the marginal polytope)
- Goal: Find 50 best. Stripes and Nillson find all of them exactly. Up to 19 spanning trees added

Protein Side Chain Prediction

 Given protein's 3D shape (backbone), choose most probable side chain configuration

- Can be cast as a MAP problem
- Important to obtain multiple possible solutions

Protein Side Chain Prediction

- Stripes found the exact solutions for all problems studied
- In some cases, we used a tighter approximation of the marginal polytope (Sontag et al, UAI 08)

When are spanning trees enough?

- When are spanning trees enough?
- What is the polytope structure for k-best?

- When are spanning trees enough?
- What is the polytope structure for k-best?
- Finding k-best "different" solutions

- When are spanning trees enough?
- What is the polytope structure for k-best?
- Finding k-best "different" solutions
- Scalable algorithms

- When are spanning trees enough?
- What is the polytope structure for k-best?
- Finding k-best "different" solutions
- Scalable algorithms
- If a given problem is solved with a marginal polytope relaxation, what can we say about the second best?

- When are spanning trees enough?
- What is the polytope structure for k-best?
- Finding k-best "different" solutions
- Scalable algorithms
- If a given problem is solved with a marginal polytope relaxation, what can we say about the second best?

Summary

- The 2nd best can be posed as a linear program
- For trees differs from Ist best by one constraint only
- For non-trees, approximation can be devised by adding inequalities for all spanning trees
- Empirically effective